## TOPOLOGY IV - MID-SEMESTRAL EXAM

Time : 2 hours
Max. Marks : 40
Answer all questions. You may use results proved in class after correctly quoting them.
(1) Let $V$ be a 4-dimensional vector space over $\mathbb{R}$ and $\left\{\epsilon_{1}, \epsilon_{2}, \epsilon_{3}, \epsilon_{4}\right\}$ a basis of $\operatorname{Alt}^{1}(V)$. Let $A=\left(a_{i j}\right)$ be a skew-symmetric matrix and define

$$
\alpha=\sum_{i<j} a_{i j} \epsilon_{i} \wedge \epsilon_{j} .
$$

Show that $\alpha \wedge \alpha=0$ if and only if $\operatorname{det}(A)=0$. If

$$
\alpha \wedge \alpha=\lambda \cdot \epsilon_{1} \wedge \epsilon_{2} \wedge \epsilon_{3} \wedge \epsilon_{4}
$$

then what is the connection between $\lambda$ and $\operatorname{det}(A)$.
(2) Show that the 1-form

$$
\omega=\frac{-y}{x^{2}+y^{2}} d x+\frac{x}{x^{2}+y^{2}} d y
$$

on $\mathbb{R}^{2}-0$ is closed but not exact.
(3) Compute $H^{p}\left(\mathbb{R}^{2}-0\right)$.
(4) For $n \geq 2$, show that there does not exist a continuous map $f: D^{n} \longrightarrow S^{n-1}$ with $f / S^{n-1}=$ $i d$. Use this to prove the Brouwer's fixed point theorem. Give complete details. $[6+4]$

